Perspective-3-Point
RecoverPose.p3p
— Functionp3p(points, pdn_pixels::AbstractVector{SVector{3, T}}, K)
Recover pose using P3P algorithm.
Arguments:
points: Vector of 3D points in
(x, y, z)` format.pdn_pixels::AbstractVector{SVector{3, Float64}}
: Corresponding projections ofpoints
onto image plane, predivided byK
intrinsics and normalized. E.g.:Ki = inv(K); p = Ki [x, y, 1]; p /= norm(p)
.K::SMatrix{3, 3, Float64}
: Camera intrinsics.
Returns:
Vector{SMatrix{3, 4, Float64}}
vector of up to 4 possible solutions. Each element is a projection matrix P = K * [R|t]
. To get pure transformation matrix, multiply P
by inv(K)
.
References:
Link: https://cmp.felk.cvut.cz/~pajdla/gvg/GVG-2016-Lecture.pdf
chapter: 7.3 Calibrated camera pose computation.
pages: 51-59
RecoverPose.p3p_select_model
— Functionp3p_select_model(models, points, pixels; threshold = 1.0)
Select best pose from models
.
Arguments:
models
: Projection matrices from which to select best one.points
: 3D points in(x, y, z)
pixels
: Corresponding projections onto image plane in(x, y)
format.threshold
: Maximum distance in pixels between projected point and its target pixel, for the point to be considered inlier. Default value is1.0
.
Returns:
n_inliers, (projection, inliers, error)
.
n_inliers
: Number of inliers for theprojection
.projection
:K * P
projection matrix that projectspoints
onto image plane.inliers
: Boolean vector indicating which point is inlier.error
: Average reprojection error for thepose
.
RecoverPose.p3p_ransac
— Functionp3p_ransac(points, pixels, pdn_pixels, K; threshold = 1.0, ransac_kwargs...)
Recover pose K*[R|t]
using P3P Ransac algorithm.
Arguments:
points
: 3D points in(x, y, z)
pixels
: Corresponding projections onto image plane in(x, y)
format.pdn_pixels
: Corresponding projections onto image plane, predivided byK
intrinsics and normalized. E.g.:Ki = inv(K); p = Ki [x, y, 1]; p /= norm(p)
.K
: Camera intrinsics.threshold
: Maximum distance in pixels between projected point and its target pixel, for the point to be considered inlier. Default value is1.0
.ransac_kwargs...
: Keyword arguments passed toransac
.
Returns:
n_inliers, (projection, inliers, error)
.
n_inliers
: Number of inliers for theprojection
.projection
:K * P
projection matrix that projectspoints
onto image plane.inliers
: Boolean vector indicating which point is inlier.error
: Average reprojection error for thepose
.
References:
Link: https://cmp.felk.cvut.cz/~pajdla/gvg/GVG-2016-Lecture.pdf
chapter: 7.3 Calibrated camera pose computation.
pages: 51-59
p3p_ransac(points, pixels, K; threshold = 1.0, ransac_kwargs...)
Recover pose K*[R|t]
using P3P Ransac algorithm.
Arguments:
points
: 3D points in(x, y, z)
pixels
: Corresponding projections onto image plane in(x, y)
format. These values, WILL be predivided and normalized by the intrinsic matrix. E.g.:Ki = inv(K); p = Ki [x, y, 1]; p /= norm(p)
.K
: Camera intrinsics.threshold::Real
: Maximum distance in pixels between projected point and its target pixel, for the point to be considered inlier. Default value is1.0
.ransac_kwargs...
: Keyword arguments passed toransac
.
Returns:
Vector{SMatrix{3, 4, Float64}}
vector of up to 4 possible solutions. Each element is a projection matrix P = K * [R|t]
. To get pure transformation matrix, multiply P
by inv(K)
.
References:
Link: https://cmp.felk.cvut.cz/~pajdla/gvg/GVG-2016-Lecture.pdf
chapter: 7.3 Calibrated camera pose computation.
pages: 51-59
RecoverPose.pre_divide_normalize
— Functionpre_divide_normalize(pixels, K)
Divide pixels
by K
intrinsic matrix and normalize them. pixels
in (x, y)
format.